Framing Fuzzy Rules using Support Sets for Effective Heart Disease Diagnosis
نویسنده
چکیده
Significance and relevance of certain features are obtained by various techniques. Feature subset selection involves summarizing mutual associations between class decisions and attribute values in a pre-classified database. In this paper genetic algorithm is used to find the relevant set of features by optimizing the fitness function and using the operators like crossover and mutation. Fuzzy logic is a form of knowledge representation suitable for notions that cannot be defined precisely, but which depend upon their contexts. In this work the fuzzy rules are framed with the help of support sets. The classification done using fuzzy inference system provides results that are better than other techniques.
منابع مشابه
Diagnosis of Coronary Artery Disease via a Novel Fuzzy Expert System Optimized by Cuckoo Search
In this paper, we propose a novel fuzzy expert system for detection of Coronary Artery Disease, using cuckoo search algorithm. This system includes three phases: firstly, at the stage of fuzzy system design, a decision tree is used to extract if-then rules which provide the crisp rules required for Coronary Artery Disease detection. Secondly, the fuzzy system is formed by setting the intervals ...
متن کاملIntelligent application for Heart disease detection using Hybrid Optimization algorithm
Prediction of heart disease is very important because it is one of the causes of death around the world. Moreover, heart disease prediction in the early stage plays a main role in the treatment and recovery disease and reduces costs of diagnosis disease and side effects it. Machine learning algorithms are able to identify an effective pattern for diagnosis and treatment of the disease and ident...
متن کاملThyroid disorder diagnosis based on Mamdani fuzzy inference system classifier
Introduction: Classification and prediction are two most important applications of statistical methods in the field of medicine. According to this note that the classical classification are provided due to the clinical symptom and do not involve the use of specialized information and knowledge. Therefore, using a classifier that can combine all this information, is necessary. The aim of this s...
متن کاملA Hybrid Model of Heart Anomalies Detection by Processing Heart Sounds
Introduction: Different factors are effective in detecting heart abnormalities. The greater the number of these factors, the greater the uncertainty in the detection of heart abnormalities. In the uncertainty condition in response of prediction model, the fuzzy systems are one of the most effective methods for generating an acceptable response. Method: In this applied study, 3240 records rela...
متن کاملA Hybrid Model of Heart Anomalies Detection by Processing Heart Sounds
Introduction: Different factors are effective in detecting heart abnormalities. The greater the number of these factors, the greater the uncertainty in the detection of heart abnormalities. In the uncertainty condition in response of prediction model, the fuzzy systems are one of the most effective methods for generating an acceptable response. Method: In this applied study, 3240 records rela...
متن کامل